
srpm rev
2004/8/17
page i

�

�

�

�

�

�

�

�

i

The Structural
Representation of

Proximity Matrices With
MATLAB



srpm re
2004/8/1
page iii

�

�

�

�

�

�

�

�

Contents

Preface xi

I (Multi- and Uni-dimensional) City-Block Scaling 1

1 Linear Unidimensional Scaling 3
1.1 LUS in the L2-Norm . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 A Data Set for Illustrative Purposes . . . . . . . . . 5
1.2 L2 Optimization Methods . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Iterative Quadratic Assignment . . . . . . . . . . . . 6
1.3 Confirmatory and Nonmetric LUS . . . . . . . . . . . . . . . . . 9

1.3.1 The confirmatory fitting of a given order using linfit.m 10
1.3.2 The monotonic transformation of a proximity matrix

using proxmon.m . . . . . . . . . . . . . . . . . . . . 11
1.4 The Dykstra-Kaczmarz Method . . . . . . . . . . . . . . . . . . 15

2 Linear Multidimensional Scaling 17
2.1 The Incorporation of Additive Constants in LUS . . . . . . . . . 19

2.1.1 The L2 Fitting of a Single Unidimensional Scale
(with an Additive Constant) . . . . . . . . . . . . . 19

2.2 Finding and Fitting Multiple Unidimensional Scales . . . . . . . 22
2.3 Incorporating Monotonic Transformation of a Proximity Matrix 25
2.4 Confirmatory Extensions to City-Block Individual Differences

Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Circular Scaling 29
3.1 The Mechanics of CUS . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 The Estimation of c and min{|xj−xi|, x0−|xj−xi|}
for a Fixed Permutation and Set of Inflection Points 31

3.1.2 Obtaining Object Orderings and Inflection Points
Around a Closed Continuum . . . . . . . . . . . . . 32

3.1.3 The Circular Unidimensional Scaling Utilities, cir-
fit.m and cirfitac.m . . . . . . . . . . . . . . . . . . 33

3.2 Circular Multidimensional Scaling . . . . . . . . . . . . . . . . . 39

iii



srpm rev
2004/8/17
page iv

�

�

�

�

�

�

�

�

iv Contents

4 LUS for Two-Mode Proximity Data 45
4.1 Reordering Two-Mode Proximity Matrices . . . . . . . . . . . . 46
4.2 Fitting a Two-Mode Unidimensional Scale . . . . . . . . . . . . 47
4.3 Multiple LUS Reorderings and Fittings . . . . . . . . . . . . . . 52
4.4 Some Useful Two-Mode Utilities . . . . . . . . . . . . . . . . . . 56
4.5 Two-mode Nonmetric Bidimensional Scaling . . . . . . . . . . . 57

II The Representation of Proximity Matrices by Tree Structures 63

5 Ultrametrics for Symmetric Proximity Data 69
5.1 Fitting a Given Ultrametric in the L2 Norm . . . . . . . . . . . 71
5.2 Finding an Ultrametric in the L2 Norm . . . . . . . . . . . . . . 72
5.3 Graphically Representing an Ultrametric . . . . . . . . . . . . . 74

5.3.1 LATEX Code for the Dendrogram of Figure 5.1 . . . . 77
5.3.2 Plotting the Dendrogram with ultraplot.m . . . . . 80

6 Additive Trees for Symmetric Proximity Data 83
6.1 Fitting a Given Additive Tree in the L2-Norm . . . . . . . . . . 84
6.2 Finding an Additive Tree in the L2-Norm . . . . . . . . . . . . . 85
6.3 Decomposing an Additive Tree . . . . . . . . . . . . . . . . . . . 87
6.4 Graphically Representing an Additive Tree . . . . . . . . . . . . 89
6.5 An Alternative for Finding an Additive Tree in the L2-Norm . . 90

7 Fitting Multiple Tree Structures for a Symmetric Matrix 95
7.1 Multiple Ultrametrics . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Multiple Additive Trees . . . . . . . . . . . . . . . . . . . . . . . 97

8 Ultrametrics and Additive Trees for Two-Mode Data 101
8.1 Fitting and Finding Two-Mode Ultrametrics . . . . . . . . . . . 102
8.2 Finding Two-Mode Additive Trees . . . . . . . . . . . . . . . . . 104
8.3 Completing a Two-Mode Ultrametric to one Defined on SA ∪ SB 107

8.3.1 The goldfish receptor data . . . . . . . . . . . . . . 111

III The Representation of Proximity Matrices by Structures
Dependent on Order (Only) 113

9 Anti-Robinson (AR) Matrices for Symmetric Proximity Data 117
9.0.2 Incorporating Transformations . . . . . . . . . . . . 118
9.0.3 Interpreting the Structure of an AR matrix . . . . . 119

9.1 Fitting a Given AR Matrix in the L2-Norm . . . . . . . . . . . . 121
9.1.1 Fitting the (In)-equality Constraints Implied by a

Given Matrix in the L2-Norm . . . . . . . . . . . . . 122
9.2 Finding an AR Matrix in the L2-Norm . . . . . . . . . . . . . . 124
9.3 Fitting and Finding a Strongly Anti-Robinson (SAR) Matrix in

the L2-Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



srpm rev
2004/8/17
page v

�

�

�

�

�

�

�

�

Contents v

9.4 The Use of Optimal Transformations and the m-function prox-
mon.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.5 Graphically Representing SAR Structures . . . . . . . . . . . . . 134
9.6 Representation Through Multiple (Strongly) AR Matrices . . . 137

10 Circular-Anti-Robinson (CAR) Matrices 145
10.1 Fitting a Given CAR Matrix in the L2-Norm . . . . . . . . . . . 147
10.2 Finding a CAR Matrix in the L2-Norm . . . . . . . . . . . . . . 149
10.3 Finding a Circular Strongly-Anti-Robinson (CSAR) Matrix in

the L2-Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.4 Graphically Representing CSAR Structures . . . . . . . . . . . . 154
10.5 Representation Through Multiple (Strongly) CAR Matrices . . 154

11 Anti-Robinson (AR) Matrices for Two-Mode Proximity Data 163
11.1 Fitting and Finding Two-Mode AR Matrices . . . . . . . . . . . 164
11.2 Multiple Two-Mode AR Reorderings and Fittings . . . . . . . . 167

Bibliography 173

A Header comments for the mentioned m-files 179

Indices 210
Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



srpm rev
2004/8/17
page vii

�

�

�

�

�

�

�

�

List of Tables

1.1 The number.dat data file extracted from Shepard, Kilpatric, and
Cunningham (1975) . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 A proximity matrix, morse digits.dat, for the ten Morse code sym-
bols representing the first ten digits (data from Rothkopf, 1957) . 31

4.1 The goldfish receptor.dat data file constructed from Schiffman and
Falkenberg (1968) . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 The two unidimensional scalings of the goldfish receptor data . . . 53

9.1 Order-constrained least-squares approximations to the digit prox-
imity data of Shepard et al. (1975); the upper-triangular portion
is anti-Robinson and the lower-triangular portion is strongly-anti-
Robinson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.2 The 45 subsets listed according to increasing diameter values that
are contiguous in the object ordering used to display the upper-
triangular portion of Table 9.1. The 22 subsets given in italics
are redundant in the sense that they are proper subsets of another
listed subset with the same diameter. . . . . . . . . . . . . . . . . 136

9.3 The fourteen (nonredundant) subsets listed according to increasing
diameter values are contiguous in the linear object ordering used
to display the lower-triangular SAR portion of Table 9.1. . . . . . 139

10.1 The fifteen (nonredundant) subsets listed according to increasing
diameter values are contiguous in the circular object ordering used
to display the CSAR entries in Table 10.2. . . . . . . . . . . . . . 155

10.2 A circular strongly-anti-Robinson order-constrained least-squares
approximations to the digit proximity data of Shepard et al. (1975).155

vii



srpm rev
2004/8/17
page ix

�

�

�

�

�

�

�

�

List of Figures

4.1 Two-dimensional joint biplot for the goldfish receptor data ob-
tained using biplottm.m . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Two-dimensional joint biplot for the goldfish receptor data ob-
tained using bimonscaltmac.m and biplottm.m . . . . . . . . . . . 61

5.1 A dendrogram (tree) representation for the ultrametric described
in the text having VAF of .4941 . . . . . . . . . . . . . . . . . . . 78

5.2 Dendrogram plot for the number data obtained using ultraplot.m 82

6.1 A dendrogram (tree) representation for the ultrametric component
of the additive tree described in the text having VAF of .6359 . . 91

6.2 A graph-theoretic representation for the additive tree described in
the text having VAF of .6359 . . . . . . . . . . . . . . . . . . . . . 92

9.1 Two 4 × 4 submatrices and the object subsets they induce, taken
from the anti-Robinson matrix in the upper-triangular portion of
Table 9.1. For (a), a graphical representation of the fitted values
is possible; for (b), the anomaly indicated by the dashed lines pre-
vents a consistent graphical representation from being constructed. 138

9.2 A graphical representation for the fitted values given by the strongly-
anti-Robinson matrix in the lower-triangular portion of Table 9.1. 139

10.1 A graphical representation for the fitted values given by the circular
strongly-anti-Robinson matrix in the lower-triangular portion of
Table 10.2 (VAF = 72.96%). Note that digit 3 is placed both in
the first and the last positions in the ordering of the objects with
the implication that the sequence continues in a circular manner.
This circularity is indicated by the curved dashed line. . . . . . . . 156

ix



srpm_r
2004/8/1
page xi

�

�

�

�

�

�

�

�

Preface

As the title of this monograph implies, our main goal is to provide and illus-
trate the use of functions (by way of m-files) within a MATLAB1 computational
environment to effect a variety of structural representations for proximity infor-
mation assumed available on a set of objects. The structural representations that
will be of interest have been discussed and developed primarily in the applied (be-
havioral science) statistical literature (e.g., in psychometrics and classification),
although interest in these topics has now extended much more widely (for exam-
ple, to bioinformatics and chemometrics). We subdivide the monograph into three
main sections depending on the general class of representations being discussed.
Part I will develop linear and circular uni- and multi-dimensional scaling using the
city-block metric as the major representational device; Part II is concerned with
characterizations based on various graph-theoretic tree structures, and specifically
with those usually referred to as ultrametrics and additive trees; Part III uses rep-
resentations defined solely by order properties, and particularly to what are called
(strongly) anti-Robinson forms. Irrespective of the part of the monograph being
discussed, there generally will be two kinds of proximity information analyzed: one-
mode and two-mode. One-mode proximity data are defined between the n objects
from a single set, and usually given in the form of a square (n × n) symmetric
matrix with a zero main diagonal; two-mode proximity data are defined between
the objects from two distinct sets containing, say, na and nb objects, respectively,
and given in the form of a rectangular (na × nb) matrix. Also, there will generally
be the flexibility to allow the fitting (additively) of multiple structures to either the
given one- or two-mode proximity information.

It is not the intent of the monograph to present formal demonstrations of the
various assertions we might make along the way, such as for the convergence of a
particular algorithm or approach. All of this is generally available in the literature
(and much of it by the authors of the current monograph), and the references to this
source material is given when appropriate. The primary interest here is to present
and demonstrate how to actually find and fit these structures computationally with
the help of some sixty-five functions (though m-files) we provide that are usable
within a MATLAB computational environment. The usage header information for
each of these functions is given in Appendix A (listed alphabetically). The m-files
themselves can be downloaded individually from

1MATLAB is a registered trademark of The MathWorks, Inc.
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http://cda.psych.uiuc.edu/srpm_mfiles

Also, there is a “zipped” file called srpm_mfiles.zip at this site that includes them
all, as well as the few small data sets used throughout the monograph to illustrate
the results of invoking the various m-files (or we might say, invoking the various
“m-functions”); thus, the reader should be able to reproduce all of the examples
given in the monograph (assuming, obviously, access to a MATLAB environment).

The computational approach implemented in the provided m-files for obtain-
ing the sundry representations, are by choice, invariably least-squares, and based
on what is called the Dykstra-Kaczmarz (DK) method for solving linear inequality
constrained least-squares tasks. The latter iterative strategy is reviewed in Chapter
1 (Section 1.4, in particular). All of the representations of concern (over all three
monograph Parts) can be characterized by explicit linear inequalities; thus, once the
latter constraints are known (by, for example, the identification of certain object
permutations through secondary optimization problems such as quadratic assign-
ment), the actual representing structure can be obtained by using the iterative DK
strategy. Also, as we will see particularly in Part II dealing with graph-theoretic
tree structures (ultrametrics and additive trees), the DK approach can even be
adopted heuristically to first identify the inequality constraints that we might wish
to impose in the first place. And once identified in this exploratory fashion, a second
application of DK could then do a confirmatory fitting of the now fixed inequality
constraints.

As noted above, our purpose in writing this monograph is to provide an ap-
plied documentation source for a collection of m-files that would be of interest to
applied statisticians and data analysts but also accessible to a notationally sophis-
ticated but otherwise substantively focused user. Such a person would typically
be most interested in analyzing a specific data set by adopting one (or some) of
the structural representations we discuss. The background we have tried to assume
is at the same level required to follow the documentation for good, commercially
available optimization subroutines, such as the Numerical Algorithms Group (NAG)
Fortran subroutine library, or at the level of one of the standard texts in applied
multivariate analysis usually used for a graduate second-year methodology course
in the behavioral and social sciences. An excellent example of the latter would be
the widely used text now in its fifth edition by Johnson and Wichern (2002). Draft
versions of the current monograph have been used as supplementary material for a
course relying on the latter text as the primary reference.

The research reported in this monograph has been partially supported by
the National Science Foundation through Grant No. SES-981407 (to LH), and by
the Netherlands Organization for Scientific Research (NWO) through Grant No.
575-67-053 for the ‘PIONEER’ project ‘Subject Oriented Multivariate Analysis’ (to
JM).
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